## Suppression of CO Chemisorption from Aqueous Solution onto Reduced Pt/TiO<sub>2</sub> Catalyst Milena Koudelka and Jan Augustynski

Département de chimie minérale, analytique et appliquée, Université de Genève, Geneva, Switzerland

The chemisorption of carbon monoxide from a 0.5 M aqueous KHCO<sub>3</sub> solution on a prereduced Pt/TiO<sub>2</sub> surface is shown to be completely inhibited as a consequence of a particular chemical state (negative effective charge) of the platinum atoms.

The nature of the interaction between group 8 metals and certain oxide supports, and its influence on the adsorption

properties of the corresponding catalysts are the subject of extensive continuing discussion.<sup>1-4</sup> A typical example of this

so-called strong metal-support interaction (S.M.S.I.) is given by the platinum/titanium dioxide system which, following reduction at temperatures above 500 °C, exhibits a drastic decrease of carbon monoxide and hydrogen chemisorption.<sup>1</sup> A plausible explanation of such behaviour proposed by Horsley<sup>5</sup> involves distinct charge transfer from Ti<sup>3+</sup> defect sites in the support to Pt atoms. According to the theoretical calculations,<sup>5</sup> the amount of the resulting effective negative charge on the Pt atom may be as large as 0.6.

Recently, we have reported<sup>6</sup> that reduced Pt deposits on TiO<sub>2</sub> (anatase), obtained by thermal decomposition of an aqueous H<sub>2</sub>PtCl<sub>6</sub> solution on titanium-supported 10-20 µm thick TiO<sub>2</sub> films, exhibited a perceptible (up to -0.5 eV) negative shift of binding energy (B.E.) of the Pt core electrons with respect to the values for bulk or supported (but nonreduced) platinum. A remarkable feature of the latter X-ray induced photoelectron spectra (X.P.S.) lay in the reversible character of the B.E. shift of the Pt 4f electrons which could be practically annulled and, successively, restored by suitable electrochemical treatment.6 This strongly suggests that the experimentally observed B.E. shift is actually to be associated with a chemical effect (*i.e.*, the  $Ti^{3+} \rightarrow Pt$  charge transfer) rather than with an extra-atomic relaxation effect caused by differences in the particle size. In fact, there is no reason to expect that an ambient-temperature, anodiccathodic polarization (which, clearly, does not involve platinum oxide formation)<sup>6</sup> could modify the size of the Pt particles.

The present communication deals with the electrochemical behaviour of the above-mentioned  $Pt/TiO_2$  surfaces in solutions saturated with CO. For comparison the investigation was extended to a  $TiO_2$  film electrode which had been platinized in a  $10^{-4}$  M aqueous  $K_2PtCl_4$  solution using a previously described<sup>7,8</sup> photochemical method, instead of the thermal decomposition. X.P.S. analyses of the latter samples confirmed the presence of metallic platinum on the  $TiO_2$  surface, with the Pt 4f B.E. slightly (*ca.* 0.3 eV) higher than in the case of unsupported (bulk) platinum. The preparation conditions were chosen in such a manner that both kinds of electrodes contained comparable amounts of platinum on the surface (10—15 atom % Pt per Ti<sup>1V</sup>).

As expected, the TiO<sub>2</sub> electrode covered with light-induced (photochemical) platinum deposit, Pt(phot.)/TiO<sub>2</sub>, displayed the usual adsorption behaviour of a platinum catalyst towards dissolved CO. This is substantiated by the cyclic voltammogram in Figure 1(a) including two anodic peaks at about 0.1 and 0.8 V vs. N.H.E. (normal hydrogen electrode), due to the oxidation of the chemisorbed CO species. A similar cyclic voltammogram, with the two anodic peaks shifted slightly towards more positive potentials, was also obtained for a smooth (bulk) platinum electrode. It should be noted that the detailed form of the voltammograms, the peak ratios and positions, depend to a large extent on the electrode pretreatment and on the sweep rate. The anodic oxidation of CO<sub>ads</sub>, leading to the formation of CO<sub>2</sub> and/or carbonate ions (depending on the solution pH), usually involves two stages corresponding to the oxidative desorption of two different kinds of chemisorbed species, e.g., weakly and strongly bonded CO<sub>ads.9</sub> The adsorption of carbon monoxide takes place in the 'hydrogen' and 'double layer' potential regions of the platinum electrode and is completed rapidly. In the case of the cyclic voltammogram in Figure 1(a), recorded at a sweep rate of 20 mV s<sup>-1</sup>, the period of time available for the adsorption was long enough (several seconds) to allow the saturation of the electrode surface with CO<sub>ads</sub>. In addition, some re-adsorption of CO might take place in parallel with the anodic stripping of CO<sub>ads</sub> from the Pt(phot.)/TiO<sub>2</sub> surface. The experiments performed with the reduced,

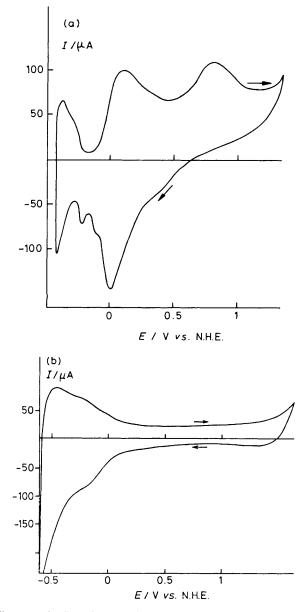



Figure 1. Cyclic voltammetric current-voltage profiles recorded at 20 mV s<sup>-1</sup> in a 0.5 M aq. KHCO<sub>3</sub> solution saturated with CO at 1 atm and 25 °C. Curve (a) corresponds to the anodic stripping of CO<sub>ads</sub> from the Pt(phot.)/TiO<sub>2</sub> surface and curve (b) shows the lack of CO adsorption on the reduced Pt(therm.)/TiO<sub>2</sub> electrode.

thermally formed Pt(therm.)/TiO<sub>2</sub> electrodes did not show any evidence of CO chemisorption despite a long exposure to a CO saturated 0.5 M KHCO<sub>3</sub> solution. The corresponding cyclic voltammograms exhibited typically a flat profile in the region of potentials extending between the hydrogen ionization and oxygen evolution regions [Figure 1(b)]. A slight increase of the current, with respect to the voltammograms recorded in the absence of CO, is to be associated with the oxidation of a small amount of products, formed at cathodic potentials, due to the reduction of CO.

The absence of CO chemisorption together with the lack of platinum oxide formation during anodic polarization of the  $Pt(therm.)/TiO_2$  electrode constitute, to our knowledge, the first example of drastic inhibition of the electrochemical reactions attributable to the interaction between the electrocatalyst and its support. On the other hand, it is interesting

that the same  $Pt(therm.)/TiO_2$  electrode has been shown<sup>10</sup> to exhibit significant activity for the cathodic reduction of another carbon oxide,  $CO_2$ .

The support of this research by the Swiss National Science Foundation is gratefully acknowledged.

Received, 12th May 1983; Com. 604

## References

- 1 S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc., 1978, 100, 170.
- 2 R. T. K. Baker, E. B. Prestridge, and R. L. Garten, J. Catal., 1979, 56, 390.

- 3 S. J. Tauster, S. C. Fung, R. T. K. Baker, and J. A. Horsley, *Science*, 1981, 211, 1121.
- 4 B. A. Sexton, A. E. Hughes, and K. Foger, J. Catal., 1982, 77, 85.
- 5 J. A. Horsley, J. Am. Chem. Soc., 1979, 101, 2870.
- 6 J. Sanchez, M. Koudelka, and J. Augustynski, J. Electroanal. Chem., 1982, 140, 161.
- 7 J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, Nouv. J. Chim., 1980, 4, 623.
- 8 M. Koudelka, J. Sanchez, and J. Augustynski, J. Phys. Chem., 1982, 86, 4277.
- 9 M. W. Breiter in 'Modern Aspects of Electrochemistry,' No. 10, eds. J. O'M. Bockris and B. E. Conway, Plenum Press, New York, 1975, ch. 3.
- 10 M. Koudelka, A. Monnier, and J. Augustynski, J. Electrochem. Soc., in the press.